«Aircraft Fatigue Life Prediction by the Surface Deformation Relief of the Aluminium Skin and Fatigue Sensors»

National Aviation University Aircraft Design Department Kyiv, Ukraine www.nau.edu.ua E-mail: <u>ignatovich@nau.edu.ua</u>

Deformation relief as an indicator of the accumulated fatigue damage

Поверхня Екструзія ковзання Інтрузія Поверхня Optical images of the deformation relief. R=0, σ_{max} =147,0 MПa

30000 cycles (1.9%)

100000 cycles (6,3%)

200000 cycles (12,6%); 400000 cycles (25,2%)

Damage parameter D

D=Sr./St.

where: Sr. – area of the surface with relief features; St. - total checked area

Procedure of the damage parameter D calculation

2-D & 3-D images of the deformation relief

Roughness parameter determination

3D data array is used for:

- the surface relief monitoring
- roughness parameter determination

Specimens for fatigue tests

Specimen of the alclad alloy D16AT for the test under tension

Specimen of the alclad alloy D16AT for the test under the bending

Structural components

Multi riveted component

An-24 welded skin component

Sensitivity of the proposed damage parameter D to the maximum stress of loading cycle

Dependence of the damage parameter D on the stress level:

- 1 σmax=76,9 MPa; 2 σmax=81,7 MPa; 3 σmax=96,2 MPa;
- 4 σmax=105,8 MPa; 5 σmax=115,4 MPa;
- 6 σmax=129,8 MPa, 7 σmax=134,6 MPa.

Conceptual version of the fatigue sensor with stress multiplication

Fatigue sensor with stress multiplication effect

Sensor

Attachment of the sensor

Sensor's sensitivity optimization by the Finite Element Method

Distribution of the stresses in the sensor and structure's component

Evolution of the sensor's damage parameter under fatigue

Evolution of the damage parameter D of the sensors with different sensitivity.

Stress level in the structure's component σ =157,0 MPa.

1-stress in the sensor - 280,0 MPa;

2- stress in the sensor - 240,0 MPa.

Increase of the sensor's sensitivity by the additional stress concentrator

Sensor with fatigue crack

Foil sensors of the fatigue damage

Deformation relief on the foil sensor grains

Evolution of the foil sensor's state under fatigue

Proposal for the FP7:

Presented approaches for the fatigue monitoring can be considered as a part of the Aircraft Structural Health monitoring Systems