Aero-Ukrainian Workshop, Kiev, October 28

New cast alloy on basis of quasibinary section of the ternary system Al-Mg-Si (X)

Prof. Yu. Milman, Dr. K. Grinkevych, Dr. N. Korzhova Frantsevich Institute for Problems of Materials Sciences (IPMS)

<u>milman@ipms.kiev.ua</u>

Dr. O. Barabash, Dr. T. Legka Kurdjumov Institute for Metal Physics (IMP)

Department of Physics of High-Strength and Metastable Alloys

<u>Production</u> of AI ingots and rods, metallic glasses (ribbons and bulk), powders of aluminum alloys, ingots of different transition metals and alloys.

Materials in investigation:

AI and aluminum alloys (wrought, cast, PM and aluminum foams), metallic glasses, quasicrystals, intermetallics, covalent crystals, ceramics, refractory metals and alloys (Cr, Mo, W) and coatings.

Methods of investigations:

1. Mechanical test (tension, compression and bending) in vacuum and the temperature interval (-196 - +1400 °C).

2. Indentation testing (-196 - +1000 °C), determination of complex mechanical properties, including plasticity.

3. TEM, SEM, Auger spectroscopy, light microscopy.

4. Hardware-software complex for automatic registration and processing of acoustic emission (AE) signals while indentation.

5. High-temperature (up to 2200 °C) DTA unit.

6. Units for investigation of tribological characteristics.

Hardware-software complex for automatic registration AE signals

Unit for investigation of tribological characteristics

♦ Cast aluminum alloys

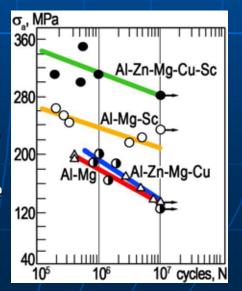
 Cast aluminum alloys on the base of intermetallic Al₃Ti

High-strength aluminum alloys

Heat resistant aluminum alloys strengthened by quasicrystalline particles

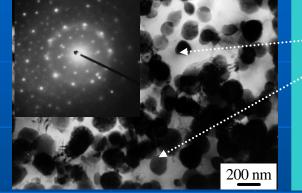
Metallic glasses

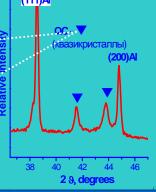
Aluminum foams


High-strength wrought Al-alloys containing Sc

High-strength Al-alloys containing Sc were elaborated. These alloys may be produced by casting and by PM. Mechanical properties of standard Al-alloys and Al-Sc alloys

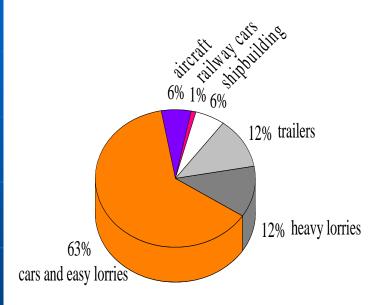
Desig- nation	Standard alloys		New alloys, alloyed by Sc in additions Cast technology / PM techology					
of alloy	YS, MPa	UTS, MPa	EI, %	YS, MPa	UTS, MPa	EI, %		
		AI – Mg						
1570(Russia)	300	400	15					
AMr(Russia) 5056(USA)	180	300	20	480 / <mark>510</mark>	520 / <mark>570</mark>	10 / <mark>8</mark>		
	Al – Mg – Li							
1420(Russia)	290	440	11	540	590	6		
	AI – Zn – Mg							
7046(USA)	420	470	12	530 / <mark>600</mark>	590 / <mark>650</mark>	12/8		
	Al – Zn – Mg – Cu							
B95(Russia) (7075 USA)	550	580	8	740 / <mark>750</mark>	810 / <mark>800</mark>	10 / <mark>8</mark>		


Further increase of the level of mechanical properties of aluminum alloys is possible with using additional alloying by Sc in combination with other transition or rare-earth metals. It was shown that alloys with a record level of strength YS = 700-740 MPa, UTS = 770-820 MPa with a rather good plasticity of 9-14 % in T6 semiproducts can be produced.


New alloys have good weldability. Sc-alloying of Al-alloys increases corrosion resistance in the sea-water, maybe possible to use the recycled aluminum with high concentration of Fe and Si [Yu.V.Milman et al, 2006]. The alloying of the system of Al-5Mg with Sc increases fatigue limit (σ_a) at 60 % and crack resistance in 2 times; for the system Al-Zn-Mg-Cu increasing of fatigue limit in 2 times.

Elaboration of structural aluminum alloys with quasicrystalline reinforcement for temperature application

Quasicrystals combine high hardness (6-10 GPa), high elasticity modulus (to 140 GPa), high wear resistance, low friction coefficient (in certain conditions lower than 0.1), comparatively low density (about 4.7 g/cm³), increased corrosion resistance and low thermal conductivity on the level of ceramic materials.

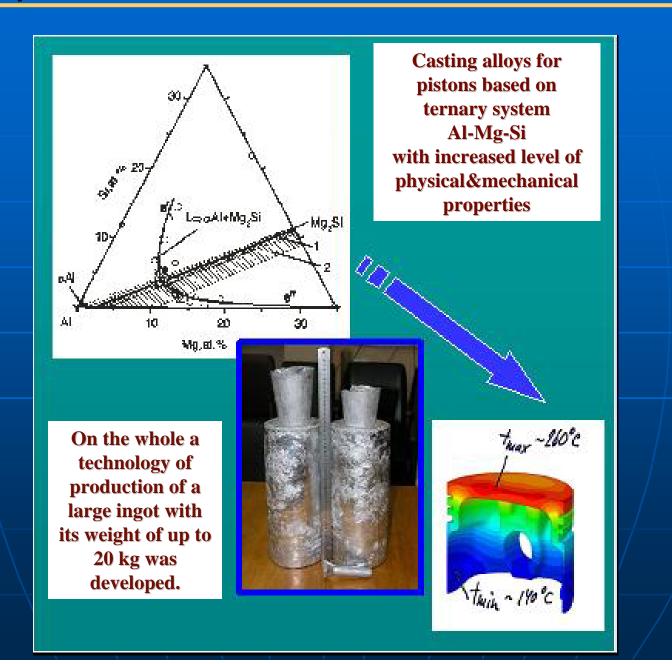

Chemical	20 °C			300 °C		
composition, at. %	YS, MPa	UTS, MPa	EL, %	YS, MPa	UTS, MPa	EL, %
AlFeCr	421	473	12.0	245	270	5.8
AlFeCrTi	470	534	8.0	286	312	5.4
AlFeCrZr	584	615	5.1	265	302	3.2
AlFeCrTiZr	588	620	5.4	307	332	3.0

Production of quasycrystalline Al-Cu-Fe powder by water atomization technique for heat-protective coatings. Structure and mechanical properties of coatings

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Composition	Density ρ, Kg\m ³	Thermal expansion coefficient αx10 ⁻⁶ , K ⁻¹	Thermal conductivity coefficient λ, Wm ⁻¹ K ⁻¹
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Fe	7870	11. 39	73.3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Al	2700	23.3	243
Q.C.standard 3770 14 2.3 Q.C. experimental 3800 14.6 166	Al ₂ O ₃	3080	8.7	3.4
Q.C. experimental 2000 116 166	$ZrO_2 - 8\%Y_2O_3$	5700	10.3	1.8
Q.C. experimental (Al-Cu-Fe-Sc) 3800 14.6 1.66	Q.C.standard	3770	14	2.3
	Q.C. experimental (Al-Cu-Fe-Sc)	3800	14.6	1.66

Problem Description & Market Need

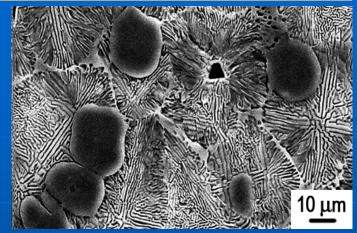
Use of aluminium alloys in the world market of transport



The forecast of consump	otion of aluminum alloys
in transport, 20	042019 years
[Metallosna	abzhenie & Sbut, 2004, No 1]
- casting	69 %
- sheet	17.8 %
- stamping	7.4 %
- forging	5.3 %

By forecasts, the share of Al-base alloys in cars will grow almost twice at the running decade. It is worth noting that the majority of them, namely almost 70%, is cast alloys

[First International Conference Aluminium in Transport, Moscow, 2005]


Development of new advanced cast eutectic alloys

Novel high-strength cast eutectic aluminum alloys

The fundamental authors' works in the fields of phase transformations are the physical base for creation of the new cast aluminum alloys, which according to their physical and mechanical properties exceed modern cast high strength aluminum alloys.

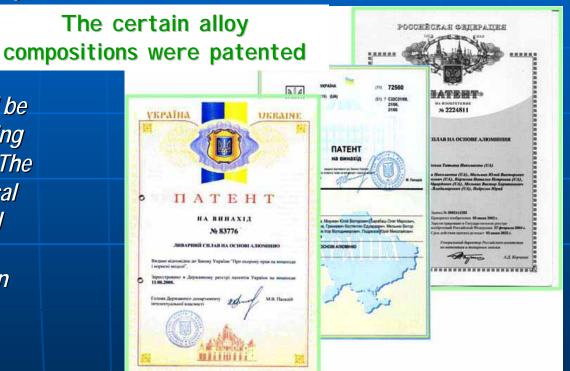
New cast alloys are created on a basis of the quasibinary (α-AI+Mg₂X) section of the ternary system AI-Mg-X.

Microstructure of eutectic (α -Al+Mg₂X) alloy

Due to purposeful alloying the different systems of particles which should not interact with eutectic colonies and are stable in certain temperature intervals were created in the matrix of eutectic alloys. According to that, the two groups of alloys have been developed: for operating an ambient temperature (Type I or Type II) and for high-temperature application (Type III) as well.

Alloy	Testing	Mechar	nical propert	Temperature	
AllOy	temperature,°C	UTS, MPa	YS, MPa	δ, %	interval of melting, °C
Type I	20	540-660	490-620	1-2	590-620
Type II	20	310-501	300-460	<1	575-590
	20	240-330	225-275	< 1.5	
Type III	260	180-203	146-164	5-10	595-599
	315	102-130	91-115	13-15	

Advantages


in accordance with GENERAL SPECIFICATION OF THE CAST ALLOYS the developed AI-Mg-Si eutectic alloys are 6XXX NOVELTY

- **1XXX** Aluminum, ≥ 99.00% min aluminum
- **<u>2XXX</u>** Aluminium Copper (Cu) alloys
- 3XXX Aluminium Si+Mg, Si+Cu, Si+Cu+Mg
- **<u>4XXX</u>** Aluminium Silicon (Si)
- **<u>5XXX</u>** Aluminium Magnesium (Mg)
- **<u>6XXX</u>** Aluminium (AI) + Magnesium (Mg) + Silicon (Si) UKRAINIAN TEAM PIONEERED IN FILLING <u>6XXX</u> ROW
- <u>**7XXX**</u> Aluminium Zinc (Zn) + Magnesium (Mg)
- **<u>8XXX</u>** Aluminium Tin (Sn)

Novel high-strength cast eutectic aluminum alloys

The essential advantage of new alloys is the combination of high mechanical, tribology, corrosive properties and excellent castability. The yield strength of new cast eutectic alloys by prior estimate exceeds this characteristic for available cast eutectic aluminum alloy 356.0 (USA) in all temperature intervals of test, and the specific strength of these alloys exceeds 4135 steel (USA) in 1.5 times.

The new (α-AI+Mg₂X) alloys could be the potential candidate for replacing of the some of commercial alloys. The high mechanical and technological properties of the new alloys will enhance their service life and durability, and thereby ensure an increment of the performance attributes.

Ukrainian research team can make the whole research cycles from target setting up to marketable product due to the most modern ideas and available technology

<u>www.cast-alum.org.ua</u>

Competitive Matrix

Important product or technology characteristics	Ukrainian product	MSFC-388 NASA	Aluminium Rheinfelden Magsimal-33 TM	
Mechanical properties in tensile test				
<i>at room temperature</i> ■ UTS [MPa] ■ δ [%]	290-285 1.0-1.5	277 0.5	200-220 3-5	
at 315 ºC (a) UTS [MPa] (b) δ [%]	195 1.8	187 2.5	N/A	
Solidification temperature range [°C]	610-590	619-486	N/A	
Cost [\$ / kg]	5.2 - 6.2	N/A	7.5-10.5	
Density [10 ³ kg/m ³]	2.59 - 2.61	2.76	2.61 – 2.65	

Stage of development

- Bench tests completed
- Ukrainian and Russian patents on basic technology
- Next step to do suitability and shop tests
- Need to apply for International application (PCT)

Competition

- New aluminium cast alloys on the basis of AI-Mg-Si system have some preferences over SILUMINS (AI-Si systems) :
- High strength, heat resistance and wear resistance;
- Excellent casting characteristics;
- Lessening of weight due to high magnesium content which is very essential for modern engines. It leads to drop of a fuel consumption and
- improvement of ecological conditions in cities and on the highways.
- Suitable for low cost mass production using conventional casting methods, such as permanent mold casting, die casting, and sand casting

We had cooperation with AFORCE Dayton USA, EARD Germany and keep on project with Boeing USA. We look forward to participate in Aero-Ukrainian Consortium.