to the Frantsevich Institute for **Problems in Materials Science** Kiev, Ukraine

Frantsevich Institute for Problems in Materials Science 22 of R&TD trials, achievemen and problems

Founded in

First director - academician Ivan Frantsevich

Frantsevich Institute for Problems in Materials Science NAS of Ukraine

Ι	Π	III	IV	V
Division of	Division of	Division of	Division of	Division of
Physical	waterials	Physical	Electronic	NanoStruc-
Chemistry and	Science of	Materials	Structure of	tured
Materials	Particulate &	Science and	Matter & Fine	Materials
Science of	Composite	Physics of	Chemical	and Thin
High-Melting	Materials and	Strength	Synthesis of	Films
Systems	Coatings		Inorganic	
			Materials	
10 depts	8 depts	8 depts	8 depts	9 depts
~230	~190	~220	~130	~220
researchers &	researchers &	researchers	researchers	researchers
engineers	engineers	& engineers	& engineers	& engineers
-				
Head	Head	Head	Head	Head
academician	academician	D.Sc.	D.Sc.	D.Sc.,
V.V. Skorokhod,	A.G.Kostornov,	S.A. Firstov,	Yu.M.Solonin,	A.V.Ragulya,
Director	Vice-director	Vice-director	Vice-director	Vice-director

IPMS today - in figures

Institute employs about 1400 people, including >500 researchers in more than 40 departments; among them: more than 70 D.Sc.; more than 300 PhD.; more than 500 engineers; around 250 young researchers; Work area 72 000 m²

Total funding in 2004 a) from budget ~ 16 M UAH b) from other sources ~ 6.5 M UAH, including **3 M UAH from international grants. Basic research > 12 M UAH;** including 1,6 M UAH from Program "Nanosystems, Nanomaterials & Nanotechnology" **Applied research and contracts > 3 M UAH** including 2.5 M UAH of Innovation projects and ~ 0.7 M UAH from Program "Resource"; Special fund for young researchers and engineers ~ 1 M UAH;

Stoclaw - in figure

International cooperation of IPMS in the period 2001-2004

- in figures

Totally more than 55 international projects :

MS tocal

- >30 grants from Science and Technology Center of Ukraine (\$100-300 K, each), primarily with partners from USA;
- 2 grants of NATO Science for Peace Program (totally \$650 K)
- 6 grants of Civilian Research & Development Foundation (totally \$370 K)
- **8 grants of INTAS and COPERNICUS**
- several bilateral grants with partners from France, Italy, Poland, Germany, India, Greece etc.

Achievements on the way of international cooperation

Prof. O.R. Andriyevska

Tentative phase diagram of the system ZrO_2 - Sm_2O_3 - Y_2O_3 at 1250 C and area for potential **TBCs**

 Sm_2O_3

Total dopant concentration dependence of thermal conductivity of selected ceramic compositions and field of most prospective ceramics for TBCs.

6Y6SmZ

9Y9SmZ

7Y7SmZ

1Y4SmZ

Δ

20

24

+

New ceramic biomaterials based on hydroxiapatite and nano- ZrO₂

Projects STCU

Dr. O.V. Shevchenko, Dr. V.A. Dubok

Systems Ti-B-Al-Si (Ge, Sn, V, Nb), for new generation of titanium alloys, titanium-based matrix composites reinforced with borides, silicaborides and germanides operating at 650 °C

STCU project P-60

Prof. S.A. Firstov, Prof. T.Ya. Velikanova, Dr. M.V. Bulanova

STCU P-60

New titanium alloys Ti-Si-X and Ti-B-X

Ti-8AI-1,4Si-2,4Zr

Deformation , $\epsilon \approx 90\%$		20 °C	600 °C	700 °C
σ _в , MPa	Rolling 1065°C, +800°C, 2 Γ	1182	923	653
δ, %		0,8-1,6	8,4	18,8
К _{1с} , МРа√м		19,2	-	-
σ _в , Mpa	Rolling 970°С +800°, 2 г	1234	608	409
δ, %		6,1	18	28,6
К _{1с} , MPa√м		50	-	-
E, GPa		125		

Ti-6,6AI-1,3Si-1,1B-3,3Zr

Deformation,	ε≈90%	20 °C	600 °C	700 °C
σ _в , MPa		1519	590	347
δ, %	Rolling	1,26	7,8	6,4
К _{1с} , MPa√м	+800°C,2Γ	-	-	-
E, GPa		158	-	

Developed the technology of new aluminum-based alloys stable at high temperatures, hardened with quasicrystals:

Alloys of the system *AI-Fe-Cr-Ti* respond to the requirements of today's aviation industry $\sigma_{\rm B}$ >300 MPa at 300 °C; δ > 5 % at room temperature

2 STCU projects

Aluminum matrix *AI-Fe-Ti-Cr-Sc* with ~*30 %* nanosize quasicrystalline particles

Quasicrystals within the alloys Al-Fe-Cr

Prof. Yu.V. Milman

Achievements in NanoStructured Materials

Direction 2

Functional Nanostructured Materials

- Synthesis of oxide nanoparticles
- Synthesis of non-oxide nanoparticles
- Consolidated oxide nanoceramics and nanocomposites
- Consolidated high-melting nanoceramics and nanocomposites
- Consolidated nanostructured metals and alloys
- Synthesis of carbon and non-carbon nanoclusters
- Physics, chemistry and technology of thin films and quantum dots

Nanostructured particulate oxide-based materials

Wet chemical methods.

Hydrothermal and co-precipitation.

Systems: ZrO_2 - Y_2O_3 , ZrO_2 - Y_2O_3 -CeO₂, ZrO_2 -Al₂O₃- Y_2O_3 , ZrO_2 - Y_2O_3 , ZrO_2 - Y_2O_3 -CeO₂-Al₂O₃, YSZ+Fe₂O₃(Co₃O₄) for structural ceramics and components of sensors, SOFC, TBC.

Synthesis in micro/nanoreactors.

Rate-controlled thermal decomposition of unstable precursors and sonochemical synthesis.

Systems: BaTiO₃-based X7R dielectrics, ZrO_2 -Y₂O₃, ZrO_2 -Y₂O₃-Nd₂O₃-Nd₂O₃(Sm₂O₃) for TBCs, YSZ-Pt, YSZ-Au catalysts, perovskite-type phases like La(Nd)SrMn(Co,Ni)O₃ for SOFC.

Combined synthesis

Synthesis combines colloidal processes, microwave treatment and powerful ultrasonication to get unisized nanoparticles

Particle size of 6 to 12 nmParticle size of 20 to 40 nmPilot production developed of both products for SOFC techn.Dr. Konstantinova et al.Patent of Ukraine

Synthesis in micro/nanoreactors **Rate-controlled decomposition of precursors** 0 С **Molecular crystal** 0 0 С 0 Ti Ti Ba 0 0 Ó 0 Ba Ti 0 0 c 100 nm 0 0 0 0 0 ► 360 r) 0,25 surtace area, m²/g 30 0,20 20 0,15 00000 00000 10 0,10

4**0**0

Temperature, C

Ž00

1 - 50 grad/h ,

0,05

°,00,6

100

1000

6**0**0

2 - 750 grad/h

800

1 мкм

Porous microreactor

Dielectric Properties of the fine Barium Titanate Ceramics (CRDF UE2 2070)

Synthesis of nanosize particles based on nitrides, borides and carbides

INTERNATIONAL EFFORTS through NATO SfP and 3 STCU projects and 2 contracts with Israel and Sweden

- Detonation synthesis of nanoscale c-BN powders
- SHS of nanosize SiC-C powders;
- Plasma-chemical synthesis of single-phase nitrides and nanocomposites $(Si_3N_4$ -TiN, Si_3N_4 -TiB₂, TiN-AIN etc.)
- Chemical vapor deposition from chlorides
- Splitting of micron-sized particles of solid solutions Ti-N-C-O with boron additives.

Shock-wave Synthesis of nano-BN

Fragmentation by martensitic trasformation to 50 nm

NEW! Competition of martensitic and diffusion transformations (4).

Shock-wave Synthesis of nano-BN from amorphous Nanoreactors

Usage of disordered precursors (3-D ordering degree $p_3 \approx 0$) allows obtaining the cubic BN phase, in the area of diffusion controlled transformation.

Dark field image of cubic BN phase

Particle size distribution Patent of Ukraine

Shock-wave Synthesis of nano-BN

Synthesis of disordered graphite-like BN from unstable precursors. **Patent of Ukraine** Rate-controlled synthesis gives particles of 1-20 nm in size (we can control the average size). The best structure of intermediate product consists of crystallites (1-5 nm) divided by pores of 30 nm.

New structural form of carbon (C_m)

Prognosis of properties: bulk modulus is expected to be C_{np} (390 GPa) close to the bulk modulus of diamond (440 GPa)

SHS of SiC-C nanoparticles in nanoreactors

Superstoichiometric carbon atoms are deposited onto facets of SiC lattice forming diamond-like planar clusters inside SiC. Properties: particle size 70-200 nm Specific surface area 17-25 m²/g Authored by N. Gadzira and G. Gnesin

Synthesis of TiB₂ and TiB₂-TiN nanocomposite particles in Ti-O-N-B system

Nucleation

and growth

in mesopores of TiO₂ and splitting with excess of boron

Synthesis of Nanoclusters

Carbon Onions Carbon Nanotubes Non-carbon elongated nanostructures H₂-intercalated objects

Small-angle X-ray Scattering (SAXS)

Equal intensity peaks CKα-emission:

- 1 nano-diamond,
- 2 pyrolitic graphite,
- 3 thermally exfoliated graphite,
- 4 carbon onion

Photoelectron emission spectra CKα- from: onions (1) fullerite (2).

HYDROGEN ADSORPTION BY CARBON NANOMATERIALS

Material	Specific Surface Area	Hydrogen , wt.%	
	m²/g	77 K, 3 MPa	
SWNT	180	1.23	
MWNT	18	3.35	
Activated:			
C60	3100	3.54	
Carbon	3000	5.4	
Onions	700	9	

Patent of Ukraine

Carbon onions demonstrate highest physical adsorption capacity

(to 9 wt.%)!

Due capillary condensation of hydrogen in the surface layers of onion particles with increased d (002)

PREPARATION OF MWCNT

SWCNT and MWCNT prepared by CO conversion

- Method of low temperature (500-600 °C) catalytically conversion of CO results in the creation of carbon nanotubes and onions. Carbon nanotubes and onions prepared do not demand purification from carbon black usually formed in other processes.
- The weight ratio between nanotubes and onions is about 70...80 / 30...20.
- A typical nanotube diameter size depends on catalyst particle size and equals to 20...60 nm. The length is commonly about 3...5 μm.

Carbon and noncarbon nanotubes; In cooperation with Clarkson University NY, CRDF UE2-2356

SWCNT and MWCNT prepared by CO conversion

- Low temperature preparation of carbon nanotubes and onions free from black carbon.
- Morphology of nanotubes and onions prepared with using of different catalysts.
- ***** HP sintering of nanotubes and onions on Ni catalyst.
- Morphology of powders sintered.
- Nanoindentor tests.

PREPARATION OF MWCNT with different catalysts

Nanorods SiC, prepared by chemical synthesis using Fe – catalyst at 1000 °C for 60 min.

Drs. P. Sylenko, A. Ragulya Dr. Kharlamov

Patents of Ukraine

ΠΝ

Nanowires of TiB₂, synthesized from Ti-C-O-B system at temperature 1100 °C.

Patent of Ukraine

Developed the technology of synthesis of Si_3N_4 nanorods and nanotubes by CVD technology

Nanotubes of Si₃N₄

15-25 nm in diameter

and up to 1 µm length

Nanorods of Si_3N_4 of 50-75 nm in diameter and up to 100 µm length

Conclusions

- Tens of particulate substances and compounds had been obtained on laboratory, pilot and industry scales;
- Developed new concept of nanoparticle synthesis in nanoreactor considering wide number of possible reactors;
- Developed rate-controlled synthesis method appropriate for flexible control of nanoparticle size distribution;
- Developed new combined method for synthesis of nano-cubic boron nitride under shock—wave conditions in diffusion-controlled area of transformation from graphite-like BN;
- Developed pilot-scale manufacturing of carbon SWNT and MWNT by carbon oxide conversion reaction
- Developed laboratory synthesis of nanorods, nanowires and other elongated nanostructures based on SiC, Si₃N₄, TiB₂, BN...

